§ 195.108 pressure must be considered in accordance with §§195.108 and 195.110 and, after determining the internal design pressure, the nominal wall thickness must be increased as necessary to compensate for these concurrent loads and pressures. (e) The seam joint factor used in paragraph (a) of this section is determined in accordance with the following table: | Specification | Pipe class | Seam
joint
factor | |---------------|-----------------------------|-------------------------| | ASTM A53 | Seamless | 1.00 | | | Electric resistance welded | 1.00 | | | Furnace lap welded | 0.80 | | | Furnace butt welded | 0.60 | | ASTM A106 | Seamless | 1.00 | | ASTM A 333/ | Seamless | 1.00 | | A 333M. | | | | | Welded | 1.00 | | ASTM A381 | Double submerged arc welded | 1.00 | | ASTM A671 | Electric-fusion-welded | 1.00 | | ASTM A672 | Electric-fusion-welded | 1.00 | | ASTM A691 | Electric-fusion-welded | 1.00 | | API 5L | Seamless | 1.00 | | | Electric resistance welded | 1.00 | | | Electric flash welded | 1.00 | | | Submerged arc welded | 1.00 | | | Furnace lap welded | 0.80 | | | Furnace butt welded | 0.60 | The seam joint factor for pipe which is not covered by this paragraph must be approved by the Administrator. [Amdt. 195–22, 46 FR 38360, July 27, 1981; 47 FR 32721, July 29, 1982, as amended by Amdt. 195–30, 49 FR 7569, Mar. 1, 1984; Amdt 195–37, 51 FR 15335, Apr. 23, 1986; Amdt 195–40, 54 FR 5628, Feb. 6, 1989; 58 FR 14524, Mar. 18, 1993; Amdt. 195–50, 59 FR 17281, Apr. 12, 1994; Amdt. 195–52, 59 FR 33396, 33397, June 28, 1994] ### §195.108 External pressure. Any external pressure that will be exerted on the pipe must be provided for in designing a pipeline system. #### §195.110 External loads. - (a) Anticipated external loads (e.g.), earthquakes, vibration, thermal expansion, and contraction must be provided for in designing a pipeline system. In providing for expansion and flexibility, section 419 of ASME/ANSI B31.4 must be followed. - (b) The pipe and other components must be supported in such a way that the support does not cause excess localized stresses. In designing attachments to pipe, the added stress to the wall of the pipe must be computed and compensated for. [Amdt. 195-22, 46 FR 38360, July 27, 1981, as amended at 58 FR 14524, Mar. 18, 1993] #### §195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation. [Amdt. 195-45, 56 FR 26926, June 12, 1991] ## §195.112 New pipe. Any new pipe installed in a pipeline system must comply with the following: - (a) The pipe must be made of steel of the carbon, low alloy-high strength, or alloy type that is able to withstand the internal pressures and external loads and pressures anticipated for the pipeline system. - (b) The pipe must be made in accordance with a written pipe specification that sets forth the chemical requirements for the pipe steel and mechanical tests for the pipe to provide pipe suitable for the use intended. - (c) Each length of pipe with a nominal outside diameter of 114.3 mm (4½ in) or more must be marked on the pipe or pipe coating with the specification to which it was made, the specified minimum yield strength or grade, and the pipe size. The marking must be applied in a manner that does not damage the pipe or pipe coating and must remain visible until the pipe is installed. [Amdt. 195-22, 46 FR 38360, July 27, 1981, as amended by Amdt. 195-52, 59 FR 33396, June 28, 1994] # §195.114 Used pipe. Any used pipe installed in a pipeline system must comply with §195.112 (a) and (b) and the following: - (a) The pipe must be of a known specification and the seam joint factor must be determined in accordance with §195.106(e). If the specified minimum yield strength or the wall thickness is not known, it is determined in accordance with §195.106 (b) or (c) as appropriate. - (b) There may not be any: - (1) Buckles: - (2) Cracks, grooves, gouges, dents, or other surface defects that exceed the